Five biases create problems with share bikes
University
Share-bike littering is a problem almost everywhere it is introduced. In countries as diverse as China, Singapore and Ireland the bikes can be seen abandoned in the worst places. There are three elements to understanding the problems of share-bike dumping and vandalism:
- behaviour, or how we make the choices about how to act
- context, or the environment we’re in at the time the action happens, of which national culture is an important part
- cognition or how our brains process information.
I have previously discussed the first two elements of behaviour and context.
Read more: To end share-bike dumping, focus on how to change people’s behaviour
Read more: Three reasons why share bikes don’t fit Australian culture
This article focuses on the third element, cognition.
Biases enable quick decision-making
An important theory in how we process information is called dual processing theory . In summary it says that we have two ways of processing information. One is fast, easy and automatic, which Nobel laureate Daniel Kahneman describes as System 1. The other way is slow, effortful and deliberate, referred to as System 2.
Underlying this theory is the assumption that we try to minimise the cognitive effort we put into decision-making. We allow System 1 to do most of the heavy lifting, and refer the complicated stuff to System 2 only when needed.
That’s all well and good, except that under this theory much of our behaviour is an unconsidered reflex. While that should work well for most situations, sometimes it can lead to unintended consequences. Such as when we use share bikes. To be clear, what we’re looking at here is the behaviour of the share bike user who leaves the bike at risk, rather than the vandalism or littering that follows.
System 1 operates on mental shortcuts, or simple decision rules known as heuristics. While these generally work well, heuristics aren’t a good fit for every situation. When they fail the resulting behaviour is a bias.
So what biases are at work here?
When we look at share-bike littering, five biases are likely to be at play.
1) Omission bias is particularly relevant, as it’s how share bikes become available to vandals. This bias roughly says that we judge an action that leads to harm as worse than lack of action that leads to harm. We don’t see inaction, such as failing to park a bike in a safe and appropriate spot, as particularly wrong, even though it still leads to damage.
So, a user is likely to justify leaving the share bike somewhere dodgy on the basis that they didn’t do anything wrong. What they won’t admit to unfortunately is they exposed the bike to the risk of vandalism. If more share bikes were left in safer places, the incidence of share-bike littering would be likely to fall.
If a share bike has been left somewhere risky and exposed to vandalism, a second bias could kick in.
2) Self-serving bias says that individuals are much more likely to attribute positive outcomes to their own behaviour, and negative outcomes to someone else’s. So, if a share bike ends up in a river, it can be justified entirely as someone else’s poor behaviour, rather than the result of being left exposed by the user.
3) Attribution error bias may play a part if the share-bike user happens to be a little reflective. He or she could attribute their risky behaviour to the force of circumstance, which in their minds gave them little choice other than to abandon the bike to its fate. Unfortunately, bike scheme operators don’t help in these situations by not making it clear enough where it is risky or safe to park bikes.
The operators try to encourage users to do the right thing with a series of incentives and penalties. Unfortunately, two further biases blunt those measures.
4) Optimism bias is the first of these. It’s the all-too-familiar idea that, for example, “bad things won’t happen to me”. For a user who is aware of potential penalties, the temptation to think they’ll get away with it could be enough to tip them into abandoning the bike.
5) Discounting bias also makes potential rewards or penalties less effective. This is the notion that future penalties or rewards are not as powerful as present ones. For the share-bike user, maybe wending their way home after a good night out, the appeal of ditching the bike now and getting to bed, versus a possible penalty some time in the future, could be an easy decision to make.
So, how do we counter these biases?
Knowing that some or all of those biases are operating, what are we to do about the problems with share bikes? The answer lies in accepting these biases rather than ignoring them.
Operators could refine their business models and engineer better behaviour. For a start, they could make it much clearer to users where it’s safe or unsafe to park the bikes.
As operators track where users are, they could also notify them through their app that a penalty is highly likely if they behave in certain ways. This could deal with two biases: optimism bias – by reminding the user they’re certain to be penalised if they don’t do as they should – and the discounting bias, i.e. the penalty will happen now, not at some time in the future.
The question remains, what will push share bike operators to change their business models? Will market forces such as bike damage and the cost of recovery be enough to get them to change? Or is political leadership needed? For instance, in parts of Malaysia, share bikes have been seized when obstructing sidewalks.
This article originally appeared on The Conversation.
Monash PhD candidate Conor Wynn does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
About the Authors
-
Monash university
Monash is one of Australia's leading universities and ranks among the world's top 100. We help change lives through research and education
Monash academics are leaders in their fields and our research centres are tackling some of the world's biggest problems. Monash's teaching and learning community is one of the most vibrant in Australia. In addition, Monash has a collection of satellite campuses all over the world.
Other stories you might like
-
How do ecosystems collapse? Our study shows evolution plays a role – and can delay a disaster
It’s not easy to tell when a dynamic system, filled with life, might reach a point of no return.
-
The human health impact of climate change
The world has talked at great lengths about how climate change is an environmental crisis. But what about the human health effects that come from it?
-
The cruel inequality of climate change-induced disasters
People living with disability are disproportionally affected by climate change-induced disasters, which is why we need more disability-inclusive decision-making in climate adaptation plans.